HeartStart AED

HeartStart FRx

AED

Find similar products

The Philips HeartStart FRx defibrillator features intuitive, step-by-step voice instructions, including CPR guidance, and an audible metronome to help guide basic life support (BLS) responders while treating a suspected sudden cardiac arrest (SCA) Pre-connected SMART Pads II can be used for both adults and children. Rugged, lightweight and reliable, it can withstand rough handling and extreme temperatures. When every minute counts, Philips HeartStart FRx is the partner by your side. Side by side. Step by step.

Specifications

Environmental
Environmental
Temperature
  • Operating/Standby:32° - 122° F (0° - 50° C)
EMI (Radiated/Immunity)
  • CISPR II Group I Class B, IEC 61000-4-3, and IEC 61000-4-8
Sealing
  • Waterjet proof IPX5 per IEC60529 Dust protected IPX5 per IEC60529
Altitude
  • 0 to 15,000 feet
Aircraft
  • Device: RTCA/DO-160D;1997
Crush
  • 500 pounds
Vibration
  • Operating: meets MILSTD 810F Fig.514.5C-17, random Standby: meets MILSTD 810F Fig.514.5C-18,swept sine.
Product specifications
Product specifications
Model Number
  • 861304
Waveform
  • Truncated Exponential Biphasic. Waveform parameters adjusted as a function of each patient’s impedance.
Therapy
  • Adult defibrillation peak current: 32A (150J nominal) into a 50 ohm load. Pediatric defibrillation (with optional Infant/Child Key installed): 19A (50J nominal) into a 50 ohm load.
Battery
  • Typically 4 years when stored and maintained according to directions provided in Owner’s Manual. Standby life (after insertion):
Protocol
  • Protocol Device follows preconfigured settings. Defibrillation and CPR protocol can be customized using HeartStart Event Review or HeartStart Configure software.
Quick Shock
  • Able to deliver a shock after the end of a CPR interval, typically in eight seconds.
Physical requirements
Physical requirements
Size
  • 2.4 x 7.1 x 8.9 inches (6 x 18 x 22 cm) H x D x W
Weight
  • With battery and pads case: 3.5 lbs (1.5 kg) Without battery or pads case: 2.6 lbs (1.2 kg)
  • 1. Nichol, G., Sayre, M. R., Guerra, F., & Poole, J. (2017). Defibrillation for Ventricular Fibrillation: A Shocking Update., 70(12), 1496-1509. Journal American College of Cardiology doi:10.1016/j. jacc.2017.07.778
  • 2. Eftestol, T., Sunde, K., & Steen, P. A. (2002). Effects of interrupting precordial compressions on the calculated probability of defibrillation success during out-of-hospital cardiac arrest. Circulation, 105(19), 2270-2273. doi:10.1161/01. CIR.0000133323.15565.75
  • 3. Yu, T., Weil, M. H., Tang, W., Sun, S., Klouche, K., Povoas, H., & Bisera, J. (2002). Adverse outcomes of interrupted precordial compression during automated defibrillation. Circulation, 106(3), 368-372. doi:10.1161/01.CIR.0000021429.22005.2E
  • 4. Snyder, D., & Morgan, C. (2004). Wide variation in cardiopulmonary resuscitation interruption intervals among commercially available automated external defibrillators may affect survival despite high defibrillation efficacy. Critical Care Medicine, 32(9 Suppl), S421-S424. doi:10.1097/01.CCM.0000134265.35871.2B
  • 5. Edelson, D. P., Abella, B. S., Kramer-Johansen, J., Wik, L., Myklebust, H., Barry, A. M., . . . Becker, L. B. (2006). Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest. Resuscitation, 71(2), 137-145.